三角函数

以下是对三角函数的一些整理

三角函数

同角三角函数关系

  1. 平方关系:$\sin^2\alpha+\cos^2\alpha=1$
  2. 商数关系:$\tan\alpha = \dfrac{\sin\alpha}{\cos\alpha}$

三角函数线

有向线段:
正弦线$EF$
正切线$AG$
余弦线$OF$

特别的 当$\sin{x}<x<\tan{x},x\in\left(0,\dfrac{\pi}{2}\right)$时:
$\Rightarrow S_{\triangle OEF} < S_{\triangle\overset{\frown}{OAE}} < S_{\triangle OAG}$
$\Rightarrow EF<x<AG$

正弦函数

$f(x)=\sin x$
定义域:$R$
值域: $[-1,1]$
周期:$2\pi$
奇偶性:奇函数

余弦函数

$f(x)=\cos x$
定义域:$R$
值域: $[-1,1]$
周期:$2\pi$
奇偶性:偶函数

正切函数

$f(x)=\tan x$
定义域:${x|x\ne \dfrac{\pi}{2}+k\pi,k \in R}$
值域: $R$
周期:$\pi$
奇偶性:奇函数

诱导公式

第一组

$\sin(2k\pi+\alpha)=\sin \alpha$
$\cos(2k\pi+\alpha)=\cos \alpha$
$\tan(2k\pi+\alpha)=\tan \alpha$

$\sin(\pi+\alpha)=-\sin \alpha$
$\cos(\pi+\alpha)=-\cos \alpha$
$\tan(\pi+\alpha)=\tan \alpha$

$\sin(2k\pi-\alpha)=-\sin \alpha$
$\cos(2k\pi-\alpha)=\cos \alpha$
$\tan(2k\pi-\alpha)=-\tan \alpha$

$\sin(\pi-\alpha)=\sin \alpha$
$\cos(\pi-\alpha)=-\cos \alpha$
$\tan(\pi-\alpha)=-\tan \alpha$

第二组:

$\sin(\dfrac{\pi}{2}-\alpha)= \cos \alpha$
$\cos(\dfrac{\pi}{2}-\alpha)= \sin \alpha$

$\sin(\dfrac{\pi}{2}+\alpha)= \cos \alpha$
$\cos(\dfrac{\pi}{2}+\alpha)= -\sin \alpha$

$\sin(\dfrac{3\pi}{2}-\alpha)= -\cos \alpha$
$\cos(\dfrac{3\pi}{2}-\alpha)= -\sin \alpha$

$\sin(\dfrac{3\pi}{2}+\alpha)= -\cos \alpha$
$\cos(\dfrac{3\pi}{2}+\alpha)= \sin \alpha$

两角和差

正弦:$\sin(\alpha\pm\beta)=\sin(\alpha)\cos(\beta)\pm\cos(\alpha)\sin(\beta)$
余弦:$\cos(\alpha\pm\beta)=\cos(\alpha)\cos(\beta)\mp\sin(\alpha)\sin(\beta)$
正切:$\tan(\alpha\pm\beta)=\dfrac{\tan{\alpha}\pm\tan{\alpha}}{1\mp\tan{\alpha}\tan{\beta}}$

合一变形

将$a\sin x+b\cos x$合一变形
设 $\phi$:
$$\Rightarrow\begin{cases}\cos{\phi} = \dfrac{b}{\sqrt{a^2+b^2}}\\sin{\phi} = \dfrac{a}{\sqrt{a^2+b^2}}\end{cases}$$
$$\begin{aligned}\Rightarrow a\sin x+b\cos x & = \sqrt{a^2+b^2}\left(\dfrac{a}{\sqrt{a^2+b^2}}\sin x+\dfrac{b}{\sqrt{a^2+b^2}}\cos x\right) \ & = \sqrt{a^2+b^2}\cos(x-\phi)\end{aligned}$$

二倍角公式

$\sin{2\alpha}=2\sin{\alpha}\cos{\alpha}$
$\begin{aligned} \cos{2\alpha} & =\cos^2\alpha-\sin^2\alpha\ & = 2\cos^2\alpha-1\ & = 1-2\sin^2\alpha\end{aligned}$
$\tan 2\alpha = \dfrac{2\tan\alpha}{1-\tan^2\alpha}$

半角公式

$\sin\dfrac{\alpha}{2} = \pm \sqrt{\dfrac{1-\cos\alpha}{2}}$
$\cos\dfrac{\alpha}{2} = \pm \sqrt{\dfrac{1+\cos\alpha}{2}}$
$\begin{aligned}\tan\dfrac{\alpha}{2} & = \dfrac{\sin\alpha}{1+\cos\alpha}\ & = \dfrac{1-\cos\alpha}{\sin\alpha}\ & = \pm \sqrt{\dfrac{1-\cos\alpha}{1+\cos\alpha}}\end{aligned}$

降次公式

$\sin{\alpha}\cos{\alpha} = \dfrac{1}{2}sin{2\alpha}$
$\cos^2\alpha = \dfrac{1+\cos{2\alpha}}{2}$
$\sin^2\alpha = \dfrac{1-\cos{2\alpha}}{2}$

万能公式

$\sin\alpha = \dfrac{2\tan\dfrac{\alpha}{2}}{1+\tan^2\dfrac{\alpha}{2}}$
$\tan\alpha = \dfrac{2\tan\dfrac{\alpha}{2}}{1-\tan^2\dfrac{\alpha}{2}}$
$\cos\alpha = \dfrac{1-\tan^2\dfrac{\alpha}{2}}{1+\tan^2\dfrac{\alpha}{2}}$

三倍角公式

$\sin 3\alpha = 3\sin\alpha-4\sin^3\alpha$
$\cos 3\alpha = -3\cos\alpha+4\cos^3\alpha$
$\begin{aligned}\tan 3\alpha & = \dfrac{3\tan\alpha-\tan^3\alpha}{1-3\tan^2\alpha}\ & = \tan\alpha\tan(\dfrac{\pi}{3}+\alpha)\tan(\dfrac{\pi}{3}-\alpha)\end{aligned}$

积与和差

积化和差

$\sin\alpha\cos\beta = \dfrac{1}{2}\left[\sin(\alpha+\beta)+\sin(\alpha-\beta)\right]$
$\sin\alpha\sin\beta = -\dfrac{1}{2}\left[\cos(\alpha+\beta)-\cos(\alpha-\beta)\right]$
$\cos\alpha\cos\beta = \dfrac{1}{2}\left[\cos(\alpha+\beta)+\cos(\alpha-\beta)\right]$

和差化积

$\sin\alpha+\sin\beta = 2\sin\dfrac{\alpha+\beta}{2}\cos\dfrac{\alpha-\beta}{2}$
$\sin\alpha-\sin\beta = 2\cos\dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2}$
$\cos\alpha+\cos\beta = 2\cos\dfrac{\alpha+\beta}{2}\cos\dfrac{\alpha-\beta}{2}$
$\cos\alpha-\cos\beta = -2\sin\dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2}$

求三角函数最值?

  1. $f(x) = a\sin{x}+b\cos{x}$,通过合一变形
  2. $f(x) = a\sin^2x+b\sin{x}\cos{x}+\cos^2x$,通过先降次再合一
  3. $f(x) = a\sin^2x+b\sin{x}+c$,通过二次合一

解三角形

余弦定理

$\boxed{SSA}\boxed{SAS}\begin{cases}c^2 = a^2+b^2-2ab\cos{C}\b^2 = a^2+c^2-2ac\cos{B}\a^2 = b^2+c^2-2bc\cos{A}\end{cases}$

$\boxed{SSS}\begin{cases}\cos{C} = \dfrac{a^2+b^2-c^2}{2ab}\\cos{B} = \dfrac{a^2+c^2-b^2}{2ac}\\cos{A} = \dfrac{b^2+c^2-a^2}{2bc}\\end{cases}$

拓展:

假设$\angle{C}>\angle{B}>\angle{A}$:
若$\angle{C}=90^\circ\Longleftrightarrow\cos{C}=0\Longleftrightarrow a^2+b^2=c^2$
若$\angle{C}<90^\circ\Longleftrightarrow\cos{C}>0\Longleftrightarrow a^2+b^2>c^2$
若$\angle{C}>90^\circ\Longleftrightarrow\cos{C}<0\Longleftrightarrow a^2+b^2<c^2$

正弦定理

$\boxed{AAS}\boxed{ASA} \dfrac{a}{\sin{A}}=\dfrac{b}{\sin{B}}=\dfrac{c}{\sin{C}}=D=2R$
$\begin{cases}
\sin{A}=\dfrac{a}{2R}\
a = 2R\sin{A}
\end{cases}$
在$\triangle{ABC}$中,$A>B\Longleftrightarrow a>b\Longleftrightarrow \sin{A}>\sin{B}$

已知$\boxed{SSA}?$

  1. 利用余弦公式$\Longrightarrow$方程正根
  2. 利用正弦定理$\Longrightarrow\dfrac{a}{\sin A}=\dfrac{b}{\sin B}$
    $0<\sin B< 1\Longrightarrow 有两解 \Longrightarrow 保证C \in (0^\circ, 180^\circ)$
    $\sin B= 1\Longrightarrow 一解 B=90^\circ$
    $\sin B> 1\Longrightarrow 无解$

$\triangle{ABC}面积$

$\begin{aligned}S_{\triangle{ABC}} & =\dfrac{1}{2}bc\sin{A}\ & = \dfrac{1}{2}\left|\overrightarrow{AB}\right|\left|\overrightarrow{AC}\right|\sqrt{1-\cos^2A}\end{aligned}$

$\triangle{ABC}形状$

  1. $a\cos B = b\cos A$ 等腰
  2. $A\cos B = b\cos B$ 等腰直角
  3. $\color{RED}{公式遗漏,待询问}$